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Effects of impurities in random sequential adsorption on a one-dimensional substrate
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We have solved the kinetics of random sequential adsorption of lineark-mers on a one-dimensional disor-
dered substrate for the random sequential adsorption initial condition and for the random initial condition. The
jamming limitsu~`,k8,k! at a fixed length of lineark-mers have a minimum point at a particular density of the
lineark8-mer impurity for both cases. The coverage of the surface and the jamming limits are compared to the
results for Monte Carlo simulation. The Monte Carlo results for the jamming limits are in good agreement with
the analytical results. The continuum limits are derived from the analytical results on lattice substrates.
@S1063-651X~97!09603-7#

PACS number~s!: 05.70.Ln, 68.10.Jy
s
en
nd
v
le
tio
m

ou
al
ha

ed

ied
ed
di-

d
on-

a
are
Random sequential adsorption~RSA! of lineark-mers on
a lattice is a model of nonequilibrium deposition proce
@1–3#. The lineark-mers are deposited at random, sequ
tially and irreversibly on a substrate without diffusion a
detachment. The incoming particles do not overlap pre
ously deposited particles. The adhesion of colloidal partic
to the solid substrate serves as an experimental realiza
of RSA @4,5#. The surface coverages converge to the ja
ming limits at long times. The RSA of lineark-mers on a
one-dimensional lattice has been exactly solved by vari
methods@6,7#. The kinetics of RSA on a one-dimension
disordered substrates occupied with point impurities
been studied numerically by Milosˇević and Švratić @8#, and
solved analytically by Ben-Naim and Krapivsky@9#. Re-
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cently, the kinetics of RSA on a two-dimensional disorder
substrate with point impurities has been studied by Lee@10#
using a Monte Carlo method. In the present work we stud
the RSA of lineark-mers on a one-dimensional disorder
substrate for the random sequential adsorption initial con
tion and for the random initial condition.

Let the initial density ofk8-mer impurities ber0. Initially,
k8-mer impurities of densityr0 are adsorbed randomly an
sequentially on an empty one-dimensional substrate. C
sider the elapsed timet0 at which the density ofk8-mer im-
purities is r0. Let Pm(t;k8) denote the probability thatm
consecutive sites are empty. Thek8-mers are adsorbed on
clean surface. The rate equations for these probabilities
@1,2,9#
dPm~ t;k8!

dt
55 2~k82m11!Pk8~ t;k8!22(

j51

m21

Pk81 j~ t;k8!, m<k8

2~m2k811!Pm~ t;k8!22 (
j51

k821

Pm1 j~ t;k8!, m>k8

.

~2!

~1!
es
The first term on the right-hand side corresponds to
k8-mer fully covering them-site sequence (m<k8) or filling
it (m>k8). The second term describes the probabilities
deposition events in which them-site sequence is made no
empty by a partial overlap by the incomingk8-mer. Set the
trial solutionPm(t;k8) as

Pm~ t;k8<m!5a~ t;k8!e2mt, ~3!

where

*Electronic address: jwlee@craft.camp.clarkson.edu
e

f
a~ t;k8!5expF ~k821!t22 (

j51

k821
12e2 j t

j G . ~4!

The coverage byk8-mers is given by

u~ t;k8!512P1~ t,k8! ~5!

5k8E
0

t

du expF2u22 (
j51

k821
12e2 ju

j G . ~6!

The elapsed timet0 is defined as the time that the coverag
of the surface reaches the initial density of the impurities,r0:
3731 © 1997 The American Physical Society
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r05k8E
0

t0
du expF2u22 (

j51

k821
12e2 ju

j G . ~7!

If k851, then t052ln~12r0!. Therefore, the probability
Pm(t0 ,k851) is given by

Pm~ t0 ,k851!5~12r0!
m. ~8!

This result is consistent with the previous result of Ben-Na
and Krapivsky@9#. Whenk852, t052ln@111

2ln~12r0!#, and

Pm~ t0 ,k852!5e2mt0a~ t0 ;t852!. ~9!

The probabilityPm(t;k8,k) for adsorption of ak-mer on a
substrate occupied initially withk8-mer impurities of density
r0, follows the same rate equations of Eqs.~1! and ~2! with
k8 replaced byk. Let us the initial density of impurities isr0,
and consider the trial solution forPm(t;k8,k) for m>k,

Pm~ t;k8,k!5Pm~0! f m~ t !e2mt, ~10!

where f m~0!51 andPm(0)5Pm(t0 ;k8). Next we substitute
Eq. ~10! into Eq. ~2!, and solve forf m(t). We obtain

f m~ t !5expF ~k21!t22(
j51

k21
~12ejt !

j

Pm1 j~0!

Pm~0! G . ~11!

Therefore, the probabilityPm(t;k8,k) is given by

Pm~ t;k8,k!5a~ t0 ;k8!e2mt0 expF2~m2k11!t

22(
j51

k21
~12e2 j t !

j

Pm1 j~0!

Pm~0! G . ~12!

If k>k8, thenPm1 j (0)/Pm(0)5e2 j t0. From Eq.~2! the rate
equation forP1(t;k8,k) is given by

dP1~ t;k8,k!

dt
52kPk~ t;k8,k!. ~13!

Solution ofP1(t;k8,k) for k>k8 is obtained as

P1~ t;k8,k!5P1~0!2ka~ t0 ;k8!e2kt0E
0

t

du

3expF2u22(
j51

k21
~12e2 ju!

j
e2 j t0G ,

~14!

where

P1~0!512k8E
0

t0
du expF2u22 (

j51

k821
12e2 ju

j G ~15!

and

a~ t0 ;k8!5expF ~k821!t022 (
j51

k821
12e2 j t0

j G . ~16!

The coverage fork>k8 is obtained as
u~ t;k8,k!512P1~ t;k8,k! ~17!

5r01ka~ t0 ;k8!e2kt0E
0

t

du

3expF2u22(
j51

k21
~12e2 ju!

j
e2 j t0G . ~18!

For k,k8, the initial probabilityPm~0! is obtained from Eq.
~1! as

Pm~0!512E
e2t0

1

dvH ~k82m11!12(
j51

m21

v jJ
3expF22 (

j51

k821
~12v j !

j G , ~19!

wherev5exp~2t!. SubstitutingPm~0! in Eq. ~12!, we obtain
Pm(t;k8,k). Integrating Eq.~13!, we calculate the coverag
u(t;k8,k) for k,k8. When k851, t052ln~12r0!, and
a(t0 ,k851)51. We substitute these values into Eq.~18!.
The coverage of surface occupied initially with point imp
rities then follows as

u~ t;k851,k!5r01k~12r0!
kE

0

t

du

3expF2u22(
j51

k21
12e2 ju

j
~12r0!

j G . ~20!

These results are consistent with results of Ben-Naim
Krapivsky @9#. The jamming limit for the dimer deposition
~k52! is u~`,k851,k52!512~12r0!exp@22~12r0!#. The
jamming limits have a minimum value
umin(`,k851,k52)512e21/250.8160... atr05

1
2. When

k852, t052ln@111
2 ln~12r0!#, and a(t0 ,k852)

5~12r0!/@111
2 ln~12r0!#. Substituting these values into Eq

~18!, we obtain coverages fork852 as

u~ t;k852,k!5r01k~12r0!e
2~k21!t0E

0

t

expF2u

22(
j51

k21
~12e2 ju!

j
e2 j t0Gdu. ~21!

For ~k852, k51! the jamming limit is trivially obtained as
u~`;k852,k51!51. For the deposition of dimer only~k852,
k52!, the jamming limit is consistent with the previous r
sults as u(`;k852,k52)512e2250.8646... @6,7#. For
~k852, k>3!, we obtain the jamming limits by integratin
Eq. ~21!. The initial elapsed timet0 is numerically calculated
by using Eq.~7! whenk8.2. Using the timet0, we calculate
the coverage from Eq.~18!. The jamming limitsu~t5`;
k852,k! are plotted in Fig. 1. The solid lines in Fig. 1 rep
resent results obtained by numerical integration of Eq.~18!.
The symbols in Fig. 1 represent the Monte Carlo results fo
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one-dimensional lattice of sizeL5105 using periodic bound-
ary conditions and 103 configurational averages. The Mon
Carlo results are in good agreement with the results of
merical calculations. The appearance of the minimum po
of the jamming limits is consistent with the previous exa
results@9# and Monte Carlo results@8,10# on the adsorption
of k-mers on a substrate occupied initially with point imp
rities. At low densities ofk8-mer impurities, the jamming
limits decrease with increasingr0. In this regime effects of
impurities are to reduce the available space fork-mers as
compared to the empty substrate. However, at high dens
of k8-mer these quenched impurities are already close to
jamming state, so that only a small fraction ofk-mers is
adsorbed on the substrate. The minimum point of the ja
ming limits decreases with increasing length of thek-mers.

Another simple solvable case is when the impurit
are distributed randomly, i.e., Pm(0)5lm, with
l5@11k821r0~12r0!

21#21. In this case, we obtaint050,
Pm(0)5lm, andPm1 j (0)/Pm(0)5l j . The coverage is ob
tained as

u~ t;k8,k!512l1klkE
0

t

du expF2u22(
j51

k21
12e2 ju

j
l j G .
~22!

When k52, the jamming limit is given as
u~`,k8,k52!512l exp~22l!. This result is the same as fo
the point impurity case. Atk52, the minimum value of the
jamming limit is umin(`,k8,k52)512e21/2 at
r05k8/(11k8). The minimum value does not change for t
length of the impurity.

Using these analytical results for lattice substrates we
obtain the coverage for the continuum case. In the continu
limit objects of unit length are deposited on a lattice initia
occupied by impurities. Let the initial density of the impur

FIG. 1. The jamming limitsu~`;k,k8! vs the concentration o
k852 impuritiesr for k53 ~d!, 4 ~s!, and 8~h!. The symbols are
Monte Carlo results, and the lines are analytical results.
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ties bem in the continuum limit. Rescale the density accor
ing to kr05m and the time askt5t @9#. With the rescaled
density and time remaining finite, we take the limitk→` of
Eqs. ~18! and ~22!. When we take the continuum limit, th
k→` limit is primary. When the impurities are distribute
randomly and sequentially, we use Eq.~18!. For the case of
point impurities the continuum coverage was already d
cussed by Ben-Naim and Krapivsky@9#. When k852,
t052ln@111

2 ln~12r0!#. The continuum coverage is obtaine
as

u~t!5exp~2m/2!E
0

t

dv expF22E
m/2

v1m/2

dw
12e2w

w G .
~23!

In the limit m→0, the coverage converges to the Re´ni
number u~`!5R50.7475...@9,11#. In the limit m→`, the
coverage approaches zero exponentially according tou~`!5
~m/2!exp~2m/2!. Whenk8.2, it is difficult to obtain the ex-
plicit dependence of the initial timet0 onr0. Thus, fork8→`
and k→`, with k8/k finite, we cannot derive the genera
expression for the continuum limit whenk8.2.

When the impurities are randomly distributed, we use E
~22!. At k852, the continuum coverage is the same as
~23!. The general form of the continuum limit in the case
random initial conditions is derived by the methods of co
tinuous RSA~not included the detailed calculations!. When
k8→` andk→`, with k8/k5 l finite, we can obtain the con
tinuum limit coverage as

u~`!5r01~12r0!exp~2a!

3E
0

`

dt expF22E
a

a1t

du
12e2u

u G , ~24!

wherea5r0/@~12r0!l #. Whenr050, continuous RSA is re-
covered. Whenl→0 and r0→0 such thatr0/l5m5const,
then Eq.~23! is recovered. Whenr0→1 the coverage is only
slightly higher than the initial coverage,u~`!5r01
~r0/l !exp~2a!. In the continuum limit the coverage follow
the algebraic decayu~`!2u(t);t21.

In summary, we calculated the jamming limits fork-mers
on one-dimensional substrates for the random sequentia
sorption initial condition and for the random initial cond
tion, by solving the appropriate rate equations. The jamm
limits u~`;k8,k! show a minimum value at a particular de
sity of impurities. The Monte Carlo data are in good agre
ment with the analytical results. The coverage in the c
tinuum limit was discussed using the analytical results
the lattice models.
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